MAT7381 Solution # 6.24

On étudie l'effet de lésions sur le lobe occipital du cerveau, normalement associé au sens de la vue. L'expérience est effectuée sur 24 singes rhésus, à 12 desquels on inflige une lésion sur le lobe occipital, les 12 autres servant de groupe témoin. On note les scores obtenus par tous les singes à un test d'acuité visuelle. Le deuxième facteur est l'âge du singe au moment du test, qui, pour le groupe expérimental, suit immédiatement l'opération. Voici les données :

	Groupe	
Âge	Contrôle	Expérimental
100	93, 90, 91, 88	86, 71, 68, 70
300	79, 94, 50, 70	76, 91, 51, 96
730	89, 91, 86, 84	60, 72, 93, 68

a) Faites une analyse de variance à l'aide d'une procédure d'analyse de variance à deux facteurs.

```
> anova(a)
             Sum Sq Mean Sq F value Pr(>F)
         Df
age
           2
              166.33
                      83.17 0.4858 0.6230
           1
              442.04
                      442.04
                              2.5823 0.1255
ar
           2 580.33
age:gr
                      290.17
                              1.6951 0.2116
Residuals 18 3081.25 171.18
```

Ni l'âge, ni le traitement, ni les interactions ne sont significatives. Le test global l'indique aussi. Voici les détails des valeurs des paramètres.

```
> a<-lm(y~age*groupe)
> summary(a)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 107.250
                       14.628
                                7.332 8.3e-07 ***
age300
            -49.750
                        35.831 -1.388
                                          0.182
age730
             51.500
                        53.146
                                0.969
                                          0.345
            -16.750
                         9.252 -1.811
                                          0.087
age300:gr
             22.000
                        13.084
                                 1.681
                                          0.110
age730:gr
              2.500
                        13.084
                                 0.191
                                          0.851
Residual standard error: 13.08 on 18 degrees of freedom
Multiple R-squared: 0.2784,
                               Adjusted R-squared: 0.07794
F-statistic: 1.389 on 5 and 18 DF,
                                   p-value: 0.2750
```

b) En utilisant les sommes de carrés calculées en a), tester l'hypothèse que les lésions n'ont pas d'effet sur l'acuité visuelle à l'âge de 100 jours ; non plus à 300 jours ; ni à 730 jours (un seul test des trois hypothèses).

C'est l'hypothèse $H_{A|B}$. Elle est testée par une statistique F dont le numérateur est $(SCA|B_1+SCA|B_2)/[a(b-1)]$ = (SCB+SCAB)/[a(b-1)] et le dénominateur est MCR. F = 340,7917/171,18 = 1,99. La valeur p (3 et 18 degrés de liberté) est 0.152.

c) Considérez un modèle d'analyse de variance à un facteur (6 niveaux) et testez les hypothèses usuelles H_A, H_B et H_{AB}. Vérifiez que les statistiques et conclusions sont les mêmes qu'en a).

	Groupe	
Âge	Contrôle	Expérimental
100	93;90;91;88	86;71;68;70
300	79;94;50;70	76;91;51;96
730	89;91;86;84	60 ; 72 ; 93 ; 68

Voici comment calculer les sommes de carrés pertinentes. On détermine les moyennes des 6 groupes (rassemblées dans une matrice désignée par A) :

```
> A
age 1 2
100 90.50 73.75
300 73.25 78.50
730 87.50 73.25
```

```
> sca<-8*var(rowMeans(A))*2
> scb<-12*var(colMeans(A))
> sce<-4*var(c(A))*5
> scab<-sce-sca-scb
> sca
[1] 166.3333
> scb
[1] 442.0417
> scab
[1] 580.3333
```